PERFORMANCE TEST REPORT

PRL ALUMINUM
PR CW600/PR CW700
ALUMINUM CURTAIN WALL
8.0 psf

CCLW JOB #11-5484-1

MAY 9, 2011

DATE OF TESTING
APRIL 25, 2011

TESTED FOR

PRL ALUMINUM
14760 DON JULIAN ROAD
CITY OF INDUSTRY, CA 91746

TESTED BY

CONSTRUCTION CONSULTING LABORATORY WEST
4751 WEST STATE STREET; SUITE B
ONTARIO, CA 91762

PH: 909-591-1789 WWW.CCLWEST.COM FAX: 909-627-9020
INTRODUCTION

The following is a test report outlining the procedure, specimen and test results utilized and obtained during testing of a curtain wall mock up furnished and installed by PRL Aluminum at Construction Consulting Laboratory West, Ontario, California, on April 25, 2011. Testing was conducted in accordance with the current issue of the test standards and industry standards.

TEST SPECIMEN

The test specimen submitted for testing was a one story unitized curtain wall mock up consisting of two (2) standard systems, PR CW-600 and PR CW-700. The overall mock up measured 15'-10 1/2" wide by 11'-4" high.

For a complete description including anchorage, glass and framing details, see drawings (sheets 1 through 9) at the conclusion of this report. Drawings are furnished by PRL Aluminum.

WITNESSED BY [all or partial testing]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>David Olague</td>
<td>PRL Aluminum</td>
</tr>
<tr>
<td>Frank Fisher</td>
<td>PRL Aluminum</td>
</tr>
<tr>
<td>Jack W. Jackson</td>
<td>Construction Consulting Laboratory West</td>
</tr>
<tr>
<td>Chad Jackson</td>
<td>Construction Consulting Laboratory West</td>
</tr>
</tbody>
</table>

TEST LOADS

Design loads (100%): **40.0 psf** Positive and **40.0 psf** Negative

All references to positive pressures are considered inward acting and negative is outward.

The mock up was tested in accordance with each applicable AAMA or ASTM standard.

TEST EQUIPMENT

The specimens were installed into a single test chamber constructed of structural shapes covered with steel and plywood bulkheads, accessible through a bulkhead door.

Air infiltration was measured with a Meriam laminar flow element and a Dwyer manometer.

Pressure differentials were measured with a Dwyer electronic manometer.

The pressure differential between the exterior and interior of the chamber was created by a positive and negative blower system.

Water was applied from a vertical spray rack mounted 24" from the specimen. The rack was equipped with swirl-type nozzles spaced two (2) feet on center, vertically and horizontally, which delivered five (5) gallons of water per hour per square foot of wall frontal area.

Structural deflections were measured with numerous dial indicator gages with follow-up hands.

Dynamic winds were generated by a Curtis Wright 3350 radial aircraft engine with a three (3) blade propeller, 14'-5" diameter, which formulates typical and atypical wind conditions.
TESTING AS FOLLOWS April 25, 2011

PRELOAD per ASTM E 330-02

To set the specimen for testing, a positive pressure differential of 20.0 psf was applied to the specimen while exhausting air in the air infiltration test. It was held for ten (10) seconds and then reduced to 6.24 psf to complete the air infiltration test. No failure shall be allowed.

RESULTS

There was no indication of or visible signs of any failure.

AIR INFRINGEMENT TEST per ASTM E 283-04

The exterior face of the specimen was covered and then subjected to a positive static pressure differential of 6.24 psf. Air infiltration was measured. This reading represents the air infiltration through the specimen and the chamber. The visqueen was removed and air infiltration again measured. The difference is the net air infiltration of the specimen.

ALLOWABLE

Air infiltration shall not exceed 0.06 cfm per square foot of fixed wall area as determined by actual measurement.
Fixed Wall Area (179.9 s/ft x 0.06) = 10.8 cfm total allowed.

RESULTS

Specimen passed.

Gross air reading: = 16.4 cfm
Tare reading (chamber): = 11.7 cfm
Total Net for Mock up = 4.7 cfm < 10.8 cfm

STATIC WATER PENETRATION TEST per ASTM E 331-00

Water was applied to the exterior face of the total specimen, at a minimum rate of five (5) gallons per hour per square foot of wall frontal area, in such a way as to completely cover the exterior face of the specimen. At the same time, a positive differential static pressure of 8.0 psf was applied to the face of the specimen. The application of pressure and water was maintained for a period of fifteen (15) minutes, with observers viewing the interior of the specimen.

ALLOWABLE

No uncontrolled water leakage. Water penetration is defined as the appearance of uncontrolled water, other than condensation, on any indoor face of any part of the exterior wall that is not contained or drained back to the exterior, or that can cause damage to adjacent materials or finishes. Water contained within drained flashings, gutters and sills is not considered water leakage. Sources of water leakage will be identified.

RESULTS

Specimen passed.

There was no water leakage noted during or after the static water test.
DYNAMIC WATER PENETRATION TEST per AAMA 501.1-05

The specimen was subjected to a dynamic wind load pressure equivalent of 8.0 psf (55.90 mph wind speed) with a water application of five (5) gallons per hour per square foot of wall frontal area for a duration of fifteen (15) minutes.

ALLOWABLE

There shall be no uncontrolled water leakage, same as the static water test above.

RESULTS

Specimen passed.

There was no water leakage noted during or after the dynamic water test.

UNIFORM STRUCTURAL DEFLECTION TEST @ DESIGN - ASTM E 330-02

The test specimen was subjected to a 50% positive design load of 20.0 psf. The pressure was held for ten (10) seconds to set for positive testing and released. Indicators were set to zero.

The test specimen was subjected to a positive load of 40.0 psf, 100% design load, held for ten (10) seconds and released. Indicators were read and all data was recorded.

The blower system, along with the measuring equipment, was then reversed. The test specimen was subjected to a negative 50% design load of 20.0 psf. The pressure was held for ten (10) seconds to set for negative testing and released. Indicators were set to zero.

The test specimen was subjected to a negative load of 40.0 psf, 100% design load, held for ten (10) seconds and released. Indicators were read and all data was recorded.

ALLOWABLE

Deflection of framing members in a direction normal to the wall plane is limited to L/175.

RESULTS

Specimen passed.

All measured spans complied with specified criteria. See elevation drawing, sheet 1 of 9, for dial indicator locations. See Charts #1 and #2 on page 6 for deflection and permanent set results (reference bold number - xx/xx for deflection). There was no glass breakage.

SEISMIC RACKING - LATERAL @ DESIGN (elastic) per AAMA 501.4-00

The bottom framing of the mockup was made to move in a parallel direction with the main wall face. The framing was moved laterally one direction .75" (3/4"), returned to zero, then racked in the opposite direction .75" (3/4") then returned to zero. This was repeated for a total of three (3) two-stroke cycles.
ALLOWABLE

No failures are allowed. Observations will be recorded.

Failure is defined as breakage including full disengagement or separation of parts or assemblies from the window wall system. Specimen shall remain weatherproof.

RESULTS

Specimen passed.

No permanent displacement, deformation, or failure and no glass breakage was noted.

REPEAT STATIC WATER PENETRATION TEST per ASTM E331-00

Same procedure and allowable criteria as previous static water test (8.0 psf).

RESULTS

Specimen passed.

There was no uncontrolled water leakage noted during or after the static water test.

UNIFORM STRUCTURAL PROOF LOAD TEST per ASTM E 330-02

The test specimen was subjected to a positive load of 30.0 psf (75% design load), held for ten (10) seconds and released. Indicators were set to zero.

The test specimen was subjected to a positive load of 60.0 psf (150% design load), held for ten (10) seconds and released. Indicators were read and all data was recorded.

The blower system, along with the measuring equipment, was reversed. The test specimen was subjected to a negative load of 30.0 psf (75% design load). The pressure was held for ten (10) seconds and released. Indicators were then set to zero.

The test specimen was subjected to a negative load of 60.0 psf (150% design load), held for ten (10) seconds and released. Indicators were read and all data was recorded.

ALLOWABLE

There shall be no failures or permanent deformation in excess of L/500 of clear span.

RESULTS

Specimen passed.

All measured spans complied with specified criteria. See elevation drawings, sheet 1 of 9, for dial indicator locations. See Charts #3 and #4 on page 7 for deflection and permanent set results (reference bold number - xx/xx for permanent set). There was no glass breakage.

END OF TESTING
Structural Readings

100% Design Load

Chart 1 of 4

**Test Pressure = 40.0 PSF **

<table>
<thead>
<tr>
<th>DIAL IND.</th>
<th>MEMBER</th>
<th>D'TL REF.</th>
<th>POSITION</th>
<th>GROSS READ</th>
<th>NET READ</th>
<th>ALLOW BELOW</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERT. MULL. - CW700</td>
<td>BOTTOM</td>
<td>03/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>VERT. MULL. - CW700 (1&3)</td>
<td>MID SPAN</td>
<td>32/01</td>
<td>29/01</td>
<td>77</td>
<td>135°</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>VERT. MULL. - CW700</td>
<td>TOP</td>
<td>03/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>VERT. MULL. - CW600</td>
<td>BOTTOM</td>
<td>02/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>VERT. MULL. - CW600 (4&6)</td>
<td>MID SPAN</td>
<td>25/00</td>
<td>22/00</td>
<td>59</td>
<td>104°</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>VERT. MULL. - CW600</td>
<td>TOP</td>
<td>04/01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Chart 2 of 4

**Test Pressure = 40.0 PSF **

<table>
<thead>
<tr>
<th>DIAL IND.</th>
<th>MEMBER</th>
<th>D'TL REF.</th>
<th>POSITION</th>
<th>GROSS READ</th>
<th>NET READ</th>
<th>ALLOW BELOW</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERT. MULL. - CW700</td>
<td>BOTTOM</td>
<td>06/02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>VERT. MULL. - CW700 (1&3)</td>
<td>MID SPAN</td>
<td>42/00</td>
<td>37/01</td>
<td>77</td>
<td>135°</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>VERT. MULL. - CW700</td>
<td>TOP</td>
<td>04/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>VERT. MULL. - CW600</td>
<td>BOTTOM</td>
<td>04/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>VERT. MULL. - CW600 (4&6)</td>
<td>MID SPAN</td>
<td>27/02</td>
<td>23/01</td>
<td>59</td>
<td>104°</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>VERT. MULL. - CW600</td>
<td>TOP</td>
<td>05/01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Readings are in hundredths of inch

Readings are **DEFLECTION/PERMANENT SET**

DeFL. LIMIT = L/175 or 3/4" MAX.
Structural Readings

150% Proof Load

PR CW-600 & PR CW-700
CCLW Report: 11-5484-1

Chart 3 of 4

Test Pressure = 60.0 PSF
Positive

<table>
<thead>
<tr>
<th>DIAL IND.</th>
<th>MEMBER</th>
<th>D'TL REF.</th>
<th>POSITION</th>
<th>GROSS READ</th>
<th>NET READ</th>
<th>ALLOW L/500</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>BOTTOM</td>
<td>08/02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>VERT. MULL. - CW700</td>
<td>(1&3)</td>
<td>MID SPAN</td>
<td>57/02</td>
<td>50/01</td>
<td>27</td>
<td>135°</td>
</tr>
<tr>
<td>3</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>TOP</td>
<td>07/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>BOTTOM</td>
<td>06/02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>VERT. MULL. - CW600</td>
<td>(4&6)</td>
<td>MID SPAN</td>
<td>51/01</td>
<td>43/01</td>
<td>21</td>
<td>104°</td>
</tr>
<tr>
<td>6</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>TOP</td>
<td>10/01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Chart 4 of 4

Test Pressure = 60.0 PSF
Negative

<table>
<thead>
<tr>
<th>DIAL IND.</th>
<th>MEMBER</th>
<th>D'TL REF.</th>
<th>POSITION</th>
<th>GROSS READ</th>
<th>NET READ</th>
<th>ALLOW BELOW</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>BOTTOM</td>
<td>12/03</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>VERT. MULL. - CW700</td>
<td>(1&3)</td>
<td>MID SPAN</td>
<td>61/03</td>
<td>50/02</td>
<td>27</td>
<td>135°</td>
</tr>
<tr>
<td>3</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>TOP</td>
<td>09/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>BOTTOM</td>
<td>11/04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>VERT. MULL. - CW600</td>
<td>(4&6)</td>
<td>MID SPAN</td>
<td>52/04</td>
<td>42/02</td>
<td>21</td>
<td>104°</td>
</tr>
<tr>
<td>6</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>TOP</td>
<td>10/01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Readings are in hundredths of inch
Readings are deflection/permanent set
Perm. set limit = L/500.

Testing Completed

As built mock-up drawings, furnished by PRL Aluminum, Inc., are reviewed and stamped by the laboratory and attached to the report. They should accompany and are a part of this report.

![Signature]

Construction Consulting Laboratory West
Jack W. Jackson
President/Manager of Testing

Francis Pickell, Sr.
Professional Engineer

CCLW Job #11-5484-1
PRL Aluminum
Curtain Wall - CW600/CW700 - 8.0 psf
MAY 9, 2011
Page 7 of 7
2 1/2 x 2 3/4 x 0.04 closer plate at top of mullions, set on bed of sealant and secure with #10 x 1/2 sms.

5/16 dia weep holes, 2 per 9" from end.

Weep holes achieved by cutting off leg at ends of extrusion at 45° (approx 1/8). Apply sealant to verticals and set horizontals into the sealant. Apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL.

4" long x 50 dure setting blocks, 2 per light & 1/2 points.

5/16 dia weep holes, 2 per 9" from end.

1/4" x 1/2" long weep holes, 2 per 3" from end.

Apply sealant to verticals and set horizontals into the sealant. Apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL.

301 shear block attached to Mullion with (2) #10 x 3" hwh sms. Horizontal fastens with (2) #10 x 8" FH sms.

PRL ALUMINUM INC.
14750 DON JULIAN RD.
INDUSTRY CA. 91746
TEL. (877) 775-2586
FAX (877) 274-8800

DRAWN: FAX: DATE: 12-16-10 CW-600 & CW-700
SHEET #4 test mock up
5/16 DIA WEEP HOLES, 2 PER 9" FROM END

WEEP HOLES achieved by drilling 3/8" dia hole
2 per at 3" from end

4" long x 80 duro setting blocks.
2 per light 8 1/2 points sitting on 1/4" aluminum flat

2/9 DIA WEEP HOLES, 2 PER 6" FROM END

2 1/2 x 2 3/4 x 0.04 closer plate at bottom of nullions.
set on bed of sealant and secure with #10 x 1/2 sms

1" x 3/4" x 1/8" aluminum shear block attached with #10 sms

apply sealant to verticals and set horizontals into the sealant.
apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL

PRL ALUMINUM INC.
14760 DON JULIAN RD.
INDUSTRY CA. 91746
TEL. (877) 775-2586
FAX (877) 274-8800

DRAWN F2
DATE 2-16-10
Sheet #5
CW-600 & CW-700 test mock up
2 1/2 x 2 3/4 x 0.04 closer plate at top of mullions, set on bed of sealant and secure with #10 x 1/2 sns.

5/16 Dia. Weep Holes, 2 Per 9' From End

Weep holes achieved by cutting off leg at ends of extrusion at 45° (approx. 1/8").

1" x 3/4" x 1/8" aluminum shear block attached with #10 sns.

Apply sealant to verticals and set horizontals into the sealant. Apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL.

4" long x 80 duco setting blocks, 2 per light & 1 point.

5/16 Dia. Weep Holes, 2 Per 9' From End

1/4" x 1/2" long weep holes, 2 per 3' from end.

Apply sealant to verticals and set horizontals into the sealant. Apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL.

PRL ALUMINUM INC.
14760 EON JULIAN RD.
INDUSTRY CA 91745
TELEPHONE 877-773-2568
FAX 877-274-8500

DRAWN F
DATE 12-16-10 CW-600 & CW-700
SHEET # H BEST MOCK UP
4" long x 80 duro setting blocks.
2 per light & 1/4 points

5/16 dia weep holes, 2 per 9" from end

VEEP HOLES achieved by drilling 8" dia hole
2 per at 3" from end

apply sealant to verticals and
set horizontals into the sealant.
apply more sealant after attachment.
if required and tool well (typ all
joints) CRITICAL SEAL

4" long x 80 duro setting blocks.
2 per light & 1/4 points
sitting on 1/4" aluminum flat

3/8 dia weep holes, 2 per 9" from end

no weep holes
ends left open

WEEP HOLES
ACHIEVED BY CUTTING OFF LEG AT ENDS OF
EXTRUSION AT 45°
(APPROX 8°)

2 1/2 x 1 1/4 x 0.04 closer plate at bottom of nullions,
set on bed of sealant and
secure with #10 x 1/2 sms

1/8 x 3/4 x 1/8" aluminum
shear block attached
with #10 sms

apply sealant to verticals and
set horizontals into the sealant.
apply more sealant after attachment.
if required and tool well (typ all
joints) CRITICAL SEAL

400-FF

CW-702

PRL ALUMINUM INC.
14760 EON JULIAN RD.
INDUSTRY CA. 91746
TEL. (877) 775-2586
FAX (877) 274-8600
PRL-ALUM

DRAWN: P
DATE: 12-16-10
sheet #9

test mock up