PERFORMANCE TEST REPORT

PRL ALUMINUM
PR CW600/PR CW700
ALUMINUM CURTAIN WALL
10.0 psf

CCLW JOB #11-5484-2

MAY 9, 2011

DATE OF TESTING
APRIL 25, 2011

TESTED FOR

PRL ALUMINUM
14760 DON JULIAN ROAD
CITY OF INDUSTRY, CA 91746

TESTED BY

CONSTRUCTION CONSULTING LABORATORY WEST
4751 WEST STATE STREET; SUITE B
ONTARIO, CA 91762

PH: 909-591-1789
WWW.CCLWEST.COM
FAX: 909-627-9020
INTRODUCTION

The following is a test report outlining the procedure, specimen and test results utilized and obtained during testing of a curtain wall mock up furnished and installed by PRL Aluminum at Construction Consulting Laboratory West, Ontario, California, on April 25, 2011. Testing was conducted in accordance with the current issue of the test standards and industry standards.

TEST SPECIMEN

The test specimen submitted for testing was a one story unitized curtain wall mock up consisting of two (2) standard systems, PR CW-600 and PR CW-700. The overall mock up measured 15'-10 1/2" wide by 11'-4" high.

For a complete description including anchorage, glass and framing details, see drawings (sheets 1 through 9) at the conclusion of this report. Drawings are furnished by PRL Aluminum.

WITNESSED BY (all or partial testing)

David Olague
PRL Aluminum

Frank Fisher
PRL Aluminum

Jack W. Jackson
Construction Consulting Laboratory West

Chad Jackson
Construction Consulting Laboratory West

TEST LOADS

Design loads (100%): 40.0 psf Positive and 40.0 psf Negative

All references to positive pressures are considered inward acting and negative is outward.

The mock up was tested in accordance with each applicable AAMA or ASTM standard.

TEST EQUIPMENT

The specimens were installed into a single test chamber constructed of structural shapes covered with steel and plywood bulkheads, accessible through a bulkhead door.

Air infiltration was measured with a Meriam laminar flow element and a Dwyer manometer.

Pressure differentials were measured with a Dwyer electronic manometer.

The pressure differential between the exterior and interior of the chamber was created by a positive and negative blower system.

Water was applied from a vertical spray rack mounted 24" from the specimen. The rack was equipped with swirl-type nozzles spaced two (2) feet on center, vertically and horizontally, which delivered five (5) gallons of water per hour per square foot of wall frontal area.

Structural deflections were measured with numerous dial indicator gages with follow-up hands.

Dynamic winds were generated by a Curtis Wright 3350 radial aircraft engine with a three (3) blade propeller, 14'-5" diameter, which formulates typical and atypical wind conditions.

CCLW JOB #11-5484-2
PRL ALUMINUM
CURTAIN WALL – CW600/CW700
10.0 psf
MAY 9, 2011
PAGE 2 OF 7
TESTING AS FOLLOWS

April 25, 2011

PRELOAD per ASTM E 330-02

To set the specimen for testing, a positive pressure differential of **20.0 psf** was applied to the specimen while exhausting air in the air infiltration test. It was held for ten (10) seconds and then reduced to **6.24 psf** to complete the air infiltration test. No failure shall be allowed.

RESULTS

There was no indication of or visible signs of any failure.

AIR INFILTRATION TEST per ASTM E 283-04

The exterior face of the specimen was covered and then subjected to a positive static pressure differential of **6.24 psf**. Air infiltration was measured. This reading represents the air infiltration through the specimen and the chamber. The visqueen was removed and air infiltration again measured. The difference is the net air infiltration of the specimen.

ALLOWABLE

Air infiltration shall not exceed **0.06 cfm** per square foot of fixed wall area as determined by actual measurement.

Fixed Wall Area (179.9 s/f x 0.06) = **10.8 cfm** total allowed.

RESULTS

Specimen passed.

Gross air reading: = 16.4 cfm
Tare reading (chamber): = 11.7 cfm
Total Net for Mock up = 4.7 cfm < 10.8 cfm

STATIC WATER PENETRATION TEST per ASTM E 331-00

Water was applied to the exterior face of the total specimen, at a minimum rate of five (5) gallons per hour per square foot of wall frontal area, in such a way as to completely cover the exterior face of the specimen. At the same time, a positive differential static pressure of **10.0 psf** was applied to the face of the specimen. The application of pressure and water was maintained for a period of fifteen (15) minutes, with observers viewing the interior of the specimen.

ALLOWABLE

No uncontrolled water leakage. Water penetration is defined as the appearance of uncontrolled water, other than condensation, on any indoor face of any part of the exterior wall that is not contained or drained back to the exterior, or that can cause damage to adjacent materials or finishes. Water contained within drained flashings, gutters and sills is not considered water leakage. Sources of water leakage will be identified.

RESULTS

Specimen passed.

There was no water leakage noted during or after the static water test.
DYNAMIC WATER PENETRATION TEST per AAMA 501.1-05

The specimen was subjected to a dynamic wind load pressure equivalent of 10.0 psf (62.5 mph wind speed) with a water application of five (5) gallons per hour per square foot of wall frontal area for a duration of fifteen (15) minutes.

ALLOWABLE

There shall be no uncontrolled water leakage, same as the static water test above.

RESULTS

Specimen passed.

There was no water leakage noted during or after the dynamic water test.

UNIFORM STRUCTURAL DEFLECTION TEST @ DESIGN - ASTM E 330-02

The test specimen was subjected to a 50% positive design load of 20.0 psf. The pressure was held for ten (10) seconds to set for positive testing and released. Indicators were set to zero.

The test specimen was subjected to a positive load of 40.0 psf, 100% design load, held for ten (10) seconds and released. Indicators were read and all data was recorded.

The blower system, along with the measuring equipment, was then reversed. The test specimen was subjected to a negative 50% design load of 20.0 psf. The pressure was held for ten (10) seconds to set for negative testing and released. Indicators were set to zero.

The test specimen was subjected to a negative load of 40.0 psf, 100% design load, held for ten (10) seconds and released. Indicators were read and all data was recorded.

ALLOWABLE

Deflection of framing members in a direction normal to the wall plane is limited to \(\text{L/175} \).

RESULTS

Specimen passed.

All measured spans complied with specified criteria. See elevation drawing, sheet 1 of 9, for dial indicator locations. See Charts #1 and #2 on page 6 for deflection and permanent set results (reference bold number - xx/xx for deflection). There was no glass breakage.

SEISMIC RACKING - LATERAL @ DESIGN (elastic) per AAMA 501.4-00

The bottom framing of the mockup was made to move in a parallel direction with the main wall face. The framing was moved laterally one direction \(.75" (3/4") \), returned to zero, then racked in the opposite direction \(.75" (3/4") \) then returned to zero. This was repeated for a total of three (3) two-stroke cycles.
ALLOWABLE

No failures are allowed. Observations will be recorded.

Failure is defined as breakage including full disengagement or separation of parts or assemblies from the window wall system. Specimen shall remain weatherproof.

RESULTS

Specimen passed.

No permanent displacement, deformation, or failure and no glass breakage was noted.

REPEAT STATIC WATER PENETRATION TEST per ASTM E331-00

Same procedure and allowable criteria as previous static water test (10.0 psf).

RESULTS

Specimen passed.

There was no uncontrolled water leakage noted during or after the static water test.

UNIFORM STRUCTURAL PROOF LOAD TEST per ASTM E 330-02

The test specimen was subjected to a positive load of \textbf{30.0 psf} (75\% design load), held for ten (10) seconds and released. Indicators were set to zero.

The test specimen was subjected to a positive load of \textbf{60.0 psf} (150\% design load), held for ten (10) seconds and released. Indicators were read and all data was recorded.

The blower system, along with the measuring equipment, was reversed. The test specimen was subjected to a negative load of \textbf{30.0 psf} (75\% design load). The pressure was held for ten (10) seconds and released. Indicators were then set to zero.

The test specimen was subjected to a negative load of \textbf{60.0 psf} (150\% design load), held for ten (10) seconds and released. Indicators were read and all data was recorded.

ALLOWABLE

There shall be no failures or permanent deformation in excess of L/500 of clear span.

RESULTS

Specimen passed.

All measured spans complied with specified criteria. See elevation drawings, sheet 1 of 9, for dial indicator locations. See Charts \#3 and \#4 on page 7 for deflection and permanent set results (reference bold number - xx/xx for \textbf{permanent set}). There was no glass breakage.

END OF TESTING

CCLW JOB #11-5484-2
PRL ALUMINUM
CURTAIN WALL – CW600/CW700 - 10.0 psf

MAY 9, 2011
PAGE 5 OF 7
STRUCTURAL READINGS
100% DESIGN LOAD

PR CW-600 & PR CW-700
CCLW REPORT: 11-5484-2

CHART 1 OF 4
TEST PRESSURE = 40.0 PSF POSITIVE

<table>
<thead>
<tr>
<th>DIAL IND.</th>
<th>MEMBER</th>
<th>D'TL REF.</th>
<th>POSITION</th>
<th>GROSS READ</th>
<th>NET READ</th>
<th>ALLOW BELOW</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>BOTTOM</td>
<td>03/00</td>
<td>-</td>
<td>77</td>
<td>135"</td>
</tr>
<tr>
<td>2</td>
<td>VERT. MULL. - CW700</td>
<td>[1&3]</td>
<td>MID SPAN</td>
<td>32/01</td>
<td>29/01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>TOP</td>
<td>03/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>BOTTOM</td>
<td>02/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>VERT. MULL. - CW600</td>
<td>[4&6]</td>
<td>MID SPAN</td>
<td>25/00</td>
<td>22/00</td>
<td>59</td>
<td>104"</td>
</tr>
<tr>
<td>6</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>TOP</td>
<td>04/01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CHART 2 OF 4
TEST PRESSURE = 40.0 PSF NEGATIVE

<table>
<thead>
<tr>
<th>DIAL IND.</th>
<th>MEMBER</th>
<th>D'TL REF.</th>
<th>POSITION</th>
<th>GROSS READ</th>
<th>NET READ</th>
<th>ALLOW BELOW</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>BOTTOM</td>
<td>06/02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>VERT. MULL. - CW700</td>
<td>[1&3]</td>
<td>MID SPAN</td>
<td>42/00</td>
<td>37/01</td>
<td>77</td>
<td>135"</td>
</tr>
<tr>
<td>3</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>TOP</td>
<td>04/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>BOTTOM</td>
<td>04/00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>VERT. MULL. - CW600</td>
<td>[4&6]</td>
<td>MID SPAN</td>
<td>27/02</td>
<td>23/01</td>
<td>59</td>
<td>104"</td>
</tr>
<tr>
<td>6</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>TOP</td>
<td>05/01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

READINGS ARE IN HUNDREDS OF INCH
READINGS ARE DEFORMATION/PERMANENT SET

DEFL. LIMIT = L/175 or 3/4" MAX.

CCLW JOB #11-5484-2
PRL ALUMINUM
CURTAIN WALL - CW600/CW700 - 10.0 psf

MAY 9, 2011
PAGE 5 OF 7
STRUCTURAL READINGS

150% PROOF LOAD

CHART 3 OF 4

TEST PRESSURE = 60.0 PSF
POSITIVE

<table>
<thead>
<tr>
<th>DIAL IND.</th>
<th>MEMBER</th>
<th>D'TL REF.</th>
<th>POSITION</th>
<th>GROSS READ</th>
<th>NET READ</th>
<th>ALLOW L/500</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>BOTTOM</td>
<td>08/02</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VERT. MULL. - CW700</td>
<td>(1&3)</td>
<td>MID SPAN</td>
<td>57/02</td>
<td>50/01</td>
<td>27</td>
<td>135"</td>
</tr>
<tr>
<td>3</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>TOP</td>
<td>07/00</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>BOTTOM</td>
<td>06/02</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VERT. MULL. - CW600</td>
<td>(4&6)</td>
<td>MID SPAN</td>
<td>51/01</td>
<td>43/01</td>
<td>21</td>
<td>104"</td>
</tr>
<tr>
<td>6</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>TOP</td>
<td>10/01</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHART 4 OF 4

TEST PRESSURE = 60.0 PSF
NEGATIVE

<table>
<thead>
<tr>
<th>DIAL IND.</th>
<th>MEMBER</th>
<th>D'TL REF.</th>
<th>POSITION</th>
<th>GROSS READ</th>
<th>NET READ</th>
<th>ALLOW BELOW</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>BOTTOM</td>
<td>12/03</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VERT. MULL. - CW700</td>
<td>(1&3)</td>
<td>MID SPAN</td>
<td>61/03</td>
<td>50/02</td>
<td>27</td>
<td>135"</td>
</tr>
<tr>
<td>3</td>
<td>VERT. MULL. - CW700</td>
<td></td>
<td>TOP</td>
<td>09/00</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>BOTTOM</td>
<td>11/04</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VERT. MULL. - CW600</td>
<td>(4&6)</td>
<td>MID SPAN</td>
<td>52/04</td>
<td>42/02</td>
<td>21</td>
<td>104"</td>
</tr>
<tr>
<td>6</td>
<td>VERT. MULL. - CW600</td>
<td></td>
<td>TOP</td>
<td>10/01</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Readings are in hundredths of inch
Readings are deflection/permanent set
Perm. set limit = L/500.

TESTING COMPLETED

As built mock-up drawings, furnished by PRL Aluminum, Inc., are reviewed and stamped by the laboratory and attached to the report. They should accompany and are a part of this report.

Jack L. Jackson
Construction Consulting Laboratory West
President/Manager of Testing

Francis Pickell, Sr.
Professional Engineer
2 1/2 x 2 3/4 x 0.04 closer plate at top of mullions set on bed of sealant and secure with #10 x 1/2 sns.

5/16 dia. weep holes, 2 per 9' from end.

Weep holes achieved by cutting off leg at ends of extrusion at 45° (approx. 1/4"

14" long x 80 duro setting blocks, 2 per light & 1" points.

5/16 dia. weep holes, 2 per 9' from end.

1/4" x 1/2" long weep holes, 2 per 3' from end.

Apply sealant to verticals and set horizontals into the sealant apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL.

CW-301 shear block attached to mullion with (2) #10 x 2 1/2" hwh sns. horizontal fastens with (2) #10 x 2" FH sns.

CW-602 400-FF

PRL ALUMINUM INC.
14760 DON JULIAN RD
INDUSTRY CA. 91746
TEL. (877) 775-2576
FAX (877) 274-8900

DRAWN BY: [Signature]
DATE: 12-15-10
Sheet #4

test back up
4' long x 80 duro setting blocks.
2 per light 2 1/2 points

3/16 Dia Weep
holes, 2 per 3' from end

apply sealant to verticales and set horizontals into the sealant.
apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL

3/8 Dia Weep
holes, 2 per 3' from end

4' long x 80 duro setting blocks.
2 per light 2 1/2 points sitting on 3/4" aluminum flat.

3/8 Dia Weep
holes, 2 per 3' from end

apply sealant to verticales and set horizontals into the sealant.
apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL

2 1/2 x 2 3/4 x 0.04 closer plate at bottom of nullions set on bed of sealant and secure with #10 x 1/2 sms

#12 hwh sheet metal anchor screws
MULLION SPlice DETAIL

Caulk joint.
Apply sealant into joint and tool up and down into voids.
Tool to a smooth finish between upper and lower mullion.
Be sure to fill gasket pocket with caulk for above and below.
Set gasket in wet sealant and tool well.
CRITICAL SEAL.

Kocker rod top & botton
bond breaker tape in this area

110 x 2 in. hsh snps to secure splice (4)
2 1/2 x 3 3/4 x 0.04 closer plate at top of mullions, set on bed of sealant and secure with #10 x 1/2 sms.

3/16 dia. weep holes, 2 per 9" from end.

Apply sealant to verticals and set horizontals into the sealant. Apply more sealant after attachment if required and tool well (typ. all joints) critical seal.

1" x 3/4" x 1/8" aluminum shear block attached with #10 sms.

4" long x 3/4" duro setting blocks, 2 per light & 2 points.

5/16 dia. weep holes, 2 per 9" from end.

Apply sealant to verticals and set horizontals into the sealant. Apply more sealant after attachment if required and tool well (typ. all joints) critical seal.

CV-301 shear block attached to mullion with (2) #10 x 1/2 hwh sms. Horizontal fastens with (2) #10 x 1/2 FH sms.

1/4" x 1/2" long weep holes, 2 per 3" from end.
4' long x 80 duco setting blocks. 2 per light & 1/2 points.

5/16 Dia Weep Holes, 2 per 9' from end

Weep holes achieved by drilling 1/4" dia hole. 2 per at 3' from end.

Apply sealant to verticals and set horizontals into the sealant. Apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL.

3/8 Dia Weep Holes, 2 per 9' from end

No weep holes ends left open.

Apply sealant to verticals and set horizontals into the sealant. Apply more sealant after attachment if required and tool well (typ all joints) CRITICAL SEAL.

2 1/2 x 1 1/4 x 0.04 closer plate at bottom of nulls. Set on bed of sealant and secure with #10 x 1/2 sms.

1" x 3/4" x 1/8" aluminum shear block attached with #10 sms.

PRL ALUMINUM INC.
14760 DDM JULIAN RD.
INDUSTRY CA. 91746
TEL. (877) 775-2586
PRL ALUM
FAX (877) 274-8800

DRAWN BY: CW-700 & CW-700
INCHES 3-4-6" SHEET 69
DATE: 12-15-10
TEST MOCK UP